Isethionate sulfite-lyase (IseG) is a recently characterized glycyl radical enzyme (GRE) that catalyzes radical-mediated C-S bond cleavage of isethionate to produce acetaldehyde and sulfite. Herein, we use quantum mechanical/molecular mechanical (QM/MM) calculations to investigate the detailed catalytic reaction mechanism of IseG. Our calculations indicate that a previously proposed direct 1,2-elimination mechanism is disfavored. Instead, we suggest a new 1,2-migration mechanism for this enzymatic reaction: a key stepwise 1,2-SO3- radical migration occurs after the catalytically active cysteinyl radical grabs a hydrogen atom from isethionate, followed by hydrogen atom transfer from cysteine to a 1-hydroxylethane-1-sulfonate radical intermediate. Finally, the elimination of sulfite from 1-hydroxylethane-1-sulfonate to result in the final product is likely to occur outside the enzyme. Glu468 in the active site is found to help orient the substrate rather than grabbing a proton from the hydroxyl group of the substrate. Our findings help reveal the mechanisms of radical-mediated C-S bond cleavage of organosulfonates catalyzed by GREs and expand the understanding of radical-based enzymatic catalysis.
Read full abstract