Cytochrome P450 enzymes (CYPs) are widely distributed among various plant groups and constitute approximately 1% of the total number of protein-coding genes. Extensive studies suggest that CYPs are involved in nearly all molecular processes that occur in plants. Over the past two decades, the identification of CYP genes has expanded rapidly, with more than 40,000 CYP genes and 819 CYP families being discovered. Copy number variation is a significant evolutionary characteristic of gene families, yet a systematic characterization of the copy evolution patterns in plant CYP gene families has been lacking, resulting in confusion and challenges in understanding CYP functions. To address these concerns, this review provides comprehensive statistics and analyses of the copy number and diversity of almost all plant CYP gene families, focusing on CYP evolution from Chlorophyta to Dicotyledoneae. Additionally, we examined the subfamily characteristics of certain CYP families with restricted copy changes and identify several CYP subfamilies that play pivotal roles in this event. Furthermore, we analyzed the structural conservation of CYPs across different taxa and compiled a comprehensive database to support plant CYP studies. Our analysis revealed differences in the six core conserved motifs of plant CYP proteins among various clans and plant taxa, while demonstrating similar conservation patterns for the ERR (Glutamic Acid-Arginine-Arginine) triad motifs. These findings will significantly facilitate the understanding of plant CYP gene evolution and metabolic diversity and serve as a valuable reference for researchers studying CYP enzymes.