With the advancement of technology and growing concern for environmental issues, the demand for energy derived from renewable sources is expected to increase. It is well established that traditional bladed wind turbines exhibit inefficiency in low wind speed conditions. To address this, Magnus wind turbines, featuring cylindrical blades, have been developed specifically for regions with predominantly low-speed winds. However, these turbines present a significant drawback, as they require electric drives to rotate the blades. This study aims to conduct a three-dimensional numerical and experimental investigation of the aerodynamics around a wind turbine with a geometrically complex blade design. The scientific contribution of this work lies in the introduction of a deflector to the cylindrical blades, intended to eliminate the need for an electric drive to initiate blade rotation. A laboratory prototype of a wind turbine with the proposed blade configuration was constructed, and numerical simulations were performed using Ansys Fluent, based on the Reynolds-averaged Navier—Stokes (RANS) equations. The results demonstrate that the turbine's power coefficient (Cp) is approximately 20 % higher than that of traditional Magnus wind turbines. These findings underscore the enhanced efficiency provided by the addition of a deflector to the cylindrical blades.