Metal-ligand cooperative systems have a long precedent in catalysis, with the classification depending on the site of substrate bond cleavage and formation and on redox state changes. Recently, our group reported the participation of a β-diketiminate ligand in chemical bonding to heterocumulenes such as CO2 and CS2 by tricopper complexes, leading to cooperative catalysis. Herein, we report the reactivity of these copper clusters, [Cu3EL]- (E = S, Se; L = tris(β-diketiminate) cyclophane ligand), toward other electrophiles, viz. alkyl halides and Brønsted acids. We identified a family of ligand-functionalized complexes, Cu3EL (R) (R = primary alkyls), and a series of disubstituted products, Cu3EL (R)2, through single-crystal X-ray diffraction, mass spectrometry, and infrared and UV-visible spectroscopy. As part of mechanistic studies on these alkylation reactions, we evaluated the acid-base reactivity of these complexes and the influence of the backbone substitution on the reduction potential. Implications of these findings for ligand noninnocence and the relevance of the metal core as a cofactor for the ligand's reactivity are discussed.
Read full abstract