This work demonstrated an innovative antimicrobial and biodegradable food packaging film CBDA-10-SA which was prepared by crosslinking a natural polyphenolic truxillic acid (cyclobutane-dicarboxylic acid, CBDA-10) and sodium alginate (SA). The CBDA-10-SA film exhibited improved tensile strength (148 MPa) and UV shielding capabilities. The maximum thermal decomposition temperature was achieved of 249 °C. Compared to SA film, CBDA-10-SA showed increased antibacterial activities. In food packaging test, the CBDA-10-SA inhibited the rapid growth of potential of hydrogen (pH) value, slowed down the weight loss, reduced total plate count (TPC) value of pork, and delayed the spoilage process of pork. Notably, CBDA-10-SA displayed remarkable degradability in soil, with 60 % degrading in four weeks. In this study, CBDA-10-SA showed enhanced physicochemical and mechanical properties compared to traditional SA film. Those improvements make it anticipated to be used in not only food packaging but also mechanical, pharmaceutical, and agricultural fields.
Read full abstract