Two libraries of quinoline-based hybrids 1-(7-chloroquinolin-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine and 7-chloro-N-phenylquinolin-4-amine were synthesized and evaluated for their α-glucosidase inhibitory and antioxidant properties. Compounds with 4-methylpiperidine and para-trifluoromethoxy groups, respectively, showed the most promising α-glucosidase inhibition activity with IC50=46.70 and 40.84 μM, compared to the reference inhibitor, acarbose (IC50=51.73 μM). Structure-activity relationship analysis suggested that the cyclic secondary amine pendants and para-phenyl substituents account for the variable enzyme inhibition. Antioxidant profiling further revealed that compounds with an N-methylpiperazine and N-ethylpiperazine ring, respectively, have good DPPH scavenging abilities with IC50=0.18, 0.58 and 0.93 mM, as compared to ascorbic acid (IC50=0.05 mM), while the best DPPH scavenger is NO2-substituted compound (IC50=0.08 mM). Also, compound with N-(2-hydroxyethyl)piperazine moiety emerged as the best NO radical scavenger with IC50=0.28 mM. Molecular docking studies showed that the present compounds are orthosteric inhibitors with their quinoline, pyrimidine, and 4-amino units as crucial pharmacophores furnishing α-glucosidase binding at the catalytic site. Taken together, these compounds exhibit dual potentials; i. e., potent α-glucosidase inhibitors and excellent free radical scavengers. Hence, they may serve as structural templates in the search for agents to manage Type 2 diabetes mellitus. Finally, in preliminary assays investigating the anti-tubercular potential of these compounds, two pyrazolopyrimidine series compounds and a 7-chloro-N-phenylquinolin-4-amine hybrid showed sub-10 μM whole-cell activities against Mycobacterium tuberculosis.
Read full abstract