Pseudomonas aeruginosa utilizesa type 3 secretion system to intoxicate host cells with the nucleotidyl cyclase ExoY. After activation by its host cell cofactor, filamentous actin, ExoY produces purine and pyrimidine cyclic nucleotides, including cAMP, cGMP, and cUMP. ExoY-generated cyclic nucleotides promote interendothelial gap formation, impair motility, and arrest cell growth. The disruptive activities of cAMP and cGMP during the P. aeruginosa infection are established; however, little is known about the function of cUMP. Here, we tested the hypothesis that cUMP contributes to endothelial cell barrier disruption during P. aeruginosa infection. Using a membrane permeable cUMP analog, cUMP-AM, we revealed that during infection with catalytically inactive ExoY, cUMP promotes interendothelial gap formation in cultured pulmonary microvascular endothelial cells (PMVECs) and contributes to increased filtration coefficient in the isolated perfused lung. These findings indicate that cUMP contributes to endothelial permeability during P. aeruginosa lung infection.NEW & NOTEWORTHY During pneumonia, bacteria utilizea virulence arsenal to communicate with host cells. The Pseudomonas aeruginosa T3SS directly introduces virulence molecules into the host cell cytoplasm. These molecules are enzymes that trigger interkingdom communication. One of the exoenzymes is a nucleotidyl cyclase that produces noncanonical cyclic nucleotides like cUMP. Little is known about how cUMP acts in the cell. Here we found that cUMP instigates pulmonary edema during Pseudomonas aeruginosa infection of the lung.