Intake of 17β-estradiol (E2), bisphenol A (BPA), and diethylstilbestrol (DES) from food can contribute to endocrine disorders. Therefore, developing a sensitive method for the simultaneous detection of E2, BPA, and DES and understanding their combined effects on endocrine disruption are crucial. We developed a fluorescence aptasensing platform utilizing DNase I–assisted cyclic enzymatic signal amplification in conjunction with an aptamer/graphene oxide complex. Using PEG 20000 as a surface-blocking agent, the aptasensor achieved ultralow detection limits of 2.643, 0.3039, and 0.6996 for E2, BPA, and DES, respectively. The sensor demonstrated accurate detection in plastic bottled water at spiked levels of 10 and 100 ng/mL. Systems toxicology revealed 30 potential targets for mixture-induced endocrine disruption. Molecular docking showed binding affinities of E2, BPA, and DES for ESR1 of −9.94, −8.29, and − 8.98 kcal/mol, respectively. These results highlight the effectiveness of the aptasensor and provide valuable insights into endocrine disruption mechanisms.
Read full abstract