BACKGROUND: Reactive oxygen species play important and ambiguous role in carcinogenesis, and local oxidative metabolism may differ significantly from systemic metabolism and determine the processes occurring in tumor tissues.
 AIM: This study aimed to examine the expressions of key oxidative metabolism genes, particularly CYB5R, POR, NOX4, SOD1, NF-B, and NRF2, in ovarian neoplasm tissues, and determine cytochrome b5 reductase and cytochrome P450 reductase activity, blood neutrophil activity, and antioxidant indices in the blood plasma and peritoneal fluid.
 MATERIALS AND METHODS: The study included two groups of patients: a study group (n = 10) with ovarian adenocarcinoma and a comparison group (n = 6) with benign ovarian neoplasms. The expressions of CYB5R1, CYB5R2/R4, CYB5R3, POR, BIRC3, NOX4, NRF2, NF-B, SOD1, HMOX1, and BCL2 genes, cytochrome b5 reductase, and cytochrome P450 reductase activity, oxidative activity of blood neutrophils, and antioxidant potential of plasma and peritoneal fluid were evaluated in these two groups of women.
 RESULTS: The expression levels of CYB5R3 and BCL2 were significantly lower in adenocarcinoma tissues. The activities of cytochrome b5 reductase and cytochrome P450 reductase increased in the group with adenocarcinoma. On average, the activity of blood neutrophils corresponded to the reference values. For blood plasma, the antioxidant capacity were not different, whereas the antioxidant capacity in the peritoneal fluid increased approximately twofold in ovarian cancer.
 CONCLUSIONS: Significantly increased cytochrome b5 reductase activity in adenocarcinoma tissues may be a response to intracellular oxidative stress, whereas CYB5R3 gene expression may be reduced by a negative feedback mechanism. The activities of cytochrome P450 reductase and its gene change to a lesser extent in the presence of ovarian adenocarcinoma. The oxidative balance in the blood and peritoneal fluid correlated with the tissue expressions of NF-B and NRF2.
Read full abstract