This paper presents a novel method based on a curve descriptor and projection geometry constrained for vessel matching. First, an LM (Leveberg–Marquardt) algorithm is proposed to optimize the matrix of geometric transformation. Combining with parameter adjusting and the trust region method, the error between 3D reconstructed vessel projection and the actual vessel can be minimized. Then, CBOCD (curvature and brightness order curve descriptor) is proposed to indicate the degree of the self-occlusion of blood vessels during angiography. Next, the error matrix constructed from the error of epipolar matching is used in point pairs matching of the vascular through dynamic programming. Finally, the recorded radius of vessels helps to construct ellipse cross-sections and samples on it to get a point set around the centerline and the point set is converted to mesh for reconstructing the surface of vessels. The validity and applicability of the proposed methods have been verified through experiments that result in the significant improvement of 3D reconstruction accuracy in terms of average back-projection errors. Simultaneously, due to precise point-pair matching, the smoothness of the reconstructed 3D coronary artery is guaranteed.
Read full abstract