Anomalies in the East Asian monsoon system significantly disrupt the densely populated East Asian region, underscoring the importance of understanding such changes and improving current predictive abilities. On the basis of instrumental records, previous studies have shown that the East Asian winter monsoon (EAWM) and summer monsoon (EASM) interact with each other. However, owing to the lack of long-term high-resolution EAWM records, it remains unclear how and whether human activity has affected the phase relationship between the EASM and EAWM since the Industrial Revolution. In this study, we present a precisely dated high-resolution EAWM record for the last 300 years from a crater lake in northeastern China. Our results indicate that the EAWM intensity was relatively weak and fluctuated significantly between 1700 and 1850 CE. After 1850 CE, the EAWM strengthened rapidly and exceeded its intensity observed at the end of the Little Ice Age. In addition, a comparison of our reconstructed EAWM record with the published EASM record clearly shows in-phase variations during the Current Warm Period. We concluded that the climatic effects of industrially induced warming enhance the EAWM by slowing the Atlantic meridional overturning circulation and increasing the meridional temperature gradient, while also strengthening the EASM by increasing hemispheric meridional gradients and affecting other large-scale processes. Under the sustained intensification of human activity, the EASM and EAWM are likely to continue exhibiting synchronous variations in the future.
Read full abstract