Andreev-Bashkin drag plays a very important role in multiple areas like superfluid mixtures, superconductors and dense nuclear matter. Here, we point out that the drag phenomenon can be also important in physics of solitons, ubiquitous objects arising in a wide array of fields ranging from tsunami waves and fiber-optic communication to biological systems. So far, fruitful studies were conducted in ultracold atomic systems where nontrivial soliton dynamics occurred due to inter-component density-density interaction. In this work we show that current-current coupling between components (Andreev-Bashkin drag) can lead to a substantially different kind of effects, unsupported by density-density interactions, such as a drag-induced dark soliton generation. This also points out that soliton dynamics can be used as a tool to experimentally study the dissipationless drag effect.