Detecting genetic variants in metagenomic data is a priority for understanding the evolution, ecology, and functional characteristics of microbial communities. Many tools that perform this metagenotyping rely on aligning reads of unknown origin to a database of sequences from many species before calling variants. In this synthesis, we investigate how databases of increasingly diverse and closely related species have pushed the limits of current alignment algorithms, thereby degrading the performance of metagenotyping tools. We identify multi-mapping reads as a prevalent source of errors and illustrate a trade-off between retaining correct alignments versus limiting incorrect alignments, many of which map reads to the wrong species. Then we evaluate several actionable mitigation strategies and review emerging methods showing promise to further improve metagenotyping in response to the rapid growth in genome collections. Our results have implications beyond metagenotyping to the many tools in microbial genomics that depend upon accurate read mapping.