Photosensitive Solder resist (SR) materials require a high glass transition temperature (Tg > 170 °C) and a coefficient of thermal expansion matching that of copper (CTE≈17 ppm/°C) to meet the demands of manufacturing processes and application reliability. However, the commonly used epoxy resin in SR materials exhibits insufficient mechanical and thermal properties, failing to meet these requirements adequately. To address this issue, alkali-soluble photosensitive poly (amic ester) (PAE) materials were synthesized. By grafting a low-temperature curing accelerator, 6-([1,1′-biphenyl]–4-yl)–4-chloroquinoline (NQL), onto the hydroxyl groups of the PAE, the resultant grafted PAE resin was blended with an alkali-soluble photosensitive modified epoxy resin (APE) to enhance the mechanical and thermal properties of the SR composite. Research indicates that due to the low-temperature curing effect and electrostatic interactions of NQL, SR-2 (with a 10 % PAE addition) exhibits a Tg of 183 °C and a CTE of 16 ppm/°C, while SR-3 (with a 30 % PAE addition) achieves a Tg of 204 °C and a CTE of 20 ppm/°C. Furthermore, with the PAE addition of 5 %, the lithography quality of SR is enhanced, enabling SR-1 to achieve a pattern resolution of up to 40 μm. The modification method involving PSPI blending has been shown to enhance the thermal stability, dimensional stability, and lithographic performance of SR, indicating significant potential applications in solder resist materials.
Read full abstract