Microvascular resistance reserve (MRR) has been proposed as a specific metric to quantify coronary microvascular function. The long-term prognostic value of MRR measured in stable patients immediately after percutaneous coronary intervention (PCI) is unknown. This study sought to determine the prognostic value of MRR measured immediately after PCI in patients with stable coronary artery disease. This study included 502 patients with stable coronary artery disease who underwent elective PCI and coronary physiological measurements, including pressure and flow estimation using a bolus thermodilution method after PCI. MRR was calculated as coronary flow reserve divided by fractional flow reserve times the ratio of mean aortic pressure at rest to that at maximal hyperemia induced by hyperemic agents. An abnormal MRR was defined as ≤2.5. Major adverse cardiac events (MACEs) were defined as a composite of all-cause mortality, any myocardial infarction, and target-vessel revascularization. During a median follow-up of 3.4 years, the cumulative MACE rate was significantly higher in the abnormal MRR group (12.5 versus 8.3 per 100 patient-years; hazard ratio 1.53 [95% CI, 1.10-2.11]; P<0.001). A higher all-cause mortality rate primarily drove this difference. On multivariable analysis, a higher MRR value was independently associated with lower MACE and lower mortality. When comparing 4 subgroups according to MRR and the index of microcirculatory resistance, patients with both abnormal MRR and index of microcirculatory resistance (≥25) had the highest MACE rate. An abnormal MRR measured immediately after PCI in patients with stable coronary artery disease is an independent predictor of MACE, particularly all-cause mortality.
Read full abstract