Cellulose (in the form of printed paper) has always been the prime medium for displaying information in our society and is far better than the various existing display technologies. This is because of its high reflectivity, contrast, low cost and flexibility. There is a major initiative to push for a dynamic display technology that emulates paper (popularly known as "electronic paper"). We have successfully demonstrated the proof of the concept of developing a dynamic display on cellulose. To the best of our knowledge, this is the first significant effort to achieve an electronic display using bacterial cellulose. First, bacterial cellulose is synthesized in a culture of Acetobacter xylinum in standard glucose-rich medium. The bacterial cellulose membrane thus formed (not pulp) is dimensionally stable, has a paper-like appearance and has a unique microfibrillar nanostructure. The technique then involves first making the cellulose an electrically conducting (or semi-conducting) sheet by depositing ions around the microfibrils to provide conducting pathways and then immobilizing electrochromic dyes within the microstructure. The whole system is then cased between transparent electrodes, and upon application of switching potentials (2-5 V) a reversible color change can be demonstrated down to a standard pixel-sized area (ca. 100 microm2). Using a standard back-plane or in-plane drive circuit, a high-resolution dynamic display device using cellulose as substrate can be constructed. The major advantages of such a device are its high paper-like reflectivity, flexibility, contrast and biodegradability. The device has the potential to be extended to various applications, such as e-book tablets, e-newspapers, dynamic wall papers, rewritable maps and learning tools.