Hippocampal pyramidal neurons potentially express multiple subtypes of GABA(A) receptors at extrasynaptic locations that could therefore respond to different drugs. We activated extrasynaptic GABA(A) receptors in cultured rat hippocampal pyramidal neurons and measured single-channel currents in order to compare the actions of two drugs that potentially target different GABA(A) receptor subtypes. Despite the possible difference in receptor targets of etomidate and diazepam, the two drugs were similar in their actions on native extrasynaptic GABA(A) receptors. Each drug produced three distinct responses that differed significantly in current magnitude, implying heterogeneous GABA(A) receptor populations. In the majority of patches, drug application increased both the single-channel conductance (>40 pS) and the open probability of the channels. By contrast, in the minority of patches, drug application caused an increase in open probability only. In the third group high-conductance channels were observed upon GABA activation and drug application increased their open probability only. The currents potentiated by etomidate or diazepam were substantially larger in patches displaying high-conductance GABA channels compared to those displaying only low-conductance channels. Factors contributing to the large magnitude of these currents were the long mean open time of high-conductance channels and the presence of multiple channels in these patches. In conclusion, we suggest that the local density of extrasynaptic GABA(A) receptors may influence their single-channel properties and may be an additional regulating factor for tonic inhibition and, importantly, differential drug modulation.
Read full abstract