CXCR4 is a seven‑transmembrane‑spanning Gi‑coupled receptor for the SDF‑1 chemokine and plays a critical role in cardiovascular development and post‑injury repair. However, the specific role of CXCR4 in cardiomyocytes is incompletely understood. It was hypothesized that CXCR4 activation in cardiomyocytes antagonizes β‑adrenoceptor/Gs signaling‑induced cardiac dysfunction. Cardiomyocyte‑specific CXCR4 knockout (CXCR4‑CMKO) mice were generated by crossing CXCR4fl/fl and MHC‑Cre+/‑ mice. Their cardiac structure and function in the basal state are equivalent to that of the control MHC‑Cre+/‑ littermates until at least 4months old. However, following continuous subcutaneous administration of isoproterenol (Iso) via an osmotic mini‑pump, the ventricular myocardial contractility, dilation, cardiomyocyte apoptosis, and interstitial fibrosis are worse in CXCR4‑CMKO mice than in MHC‑Cre+/‑ littermates. In the cultured H9C2 cardiomyocytes, SDF‑1 treatment markedly attenuated Iso‑induced apoptosis and reduction in phospho‑Akt, and this protective effect was lost by knockdown of CXCR4 or by co‑treatment with Gi inhibitors. In conclusion, CXCR4 promotes cardiomyocyte survival and heart function during β‑adrenergic stress.