Introduction: Burkholderia cepacia complex (BCC) is a nonfermentative Gram-negative bacillus, now increasingly recognized as an important human pathogen causing hospital-acquired infections. Furthermore, it is a rare cause of sepsis in pediatric age group. Objective: The study aimed to determine the pattern of BCC infection in pediatric intensive care unit (PICU), to explore the antibiotic sensitivity profile, and to identify the source of BCC if any within the PICU. Materials and Methods: The study was conducted in the Department of Microbiology and Pediatrics, JNMC, AMU, Aligarh, for a period of 8 months from January 2017 to August 2017. Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) was done in the Department of Microbiology, PGI, Chandigarh. All the blood cultures received in the enteric laboratory were screened. The isolates were then identified by standard biochemical techniques, and antimicrobial sensitivity was determined by Kirby–Bauer disc diffusion method as per the Clinical and Laboratory Standards Institute guidelines. Identity was confirmed by MALDI-TOF. As the increasing number of BCC infections was being reported, additional samples were collected from the PICU to identify the source. Results: The study involved 35 cases of blood culture-proven septicemia due to BCC among patients admitted in PICU. The first clustering of cases was noted in January 2017 affecting 6 babies. Six months later in August 2017, a second cluster of cases was noted affecting 24 babies. BCC was isolated in 35 samples. Among 30 patients, 20 were infants (including 13 neonates). Ceftriaxone (100%), minocycline (95%), chloramphenicol (85%), and co-trimoxazole (84.6%) were the most effective drugs followed by levofloxacin (79.1%), meropenem (71.4%), and ceftazidime (48.3%). None of the isolates was found to be sensitive to colistin, polymyxin B, cefepime, and tobramycin. BCC was also isolated from samples of Diurese-Nierenszintigraphie (DNS) and injection fentanyl used in PICU which could have possibly served as a source for further infection. Conclusion: BCC is an important cause of bacteremia with high fatality. It possesses the intrinsic resistance to many potent antibiotics. Proper and timely identification can help reduce the mortality, and implementation of infection control measures is essential.
Read full abstract