Most individuals infected with Mycobacterium tuberculosis (Mtb) have latent tuberculosis (TB), which can be diagnosed with tests (such as the QuantiFERON-TB Gold test [QFT]) that detect the production of IFN-γ by memory T cells in response to the Mtb-specific antigens 6 kDa early secretory antigenic target EsxA (Rv3875) (ESAT-6), 10 kDa culture filtrate antigen EsxB (Rv3874) (CFP-10), and Mtb antigen of 7.7 kDa (Rv2654c) (TB7.7). However, the immunological mechanisms that determine if an individual will develop latent or active TB remain incompletely understood. Here we compared the response of innate and adaptive peripheral blood lymphocytes from healthy individuals without Mtb infection (QFT negative) and from individuals with latent (QFT positive) or active TB infection, to determine the characteristics of these cells that correlate with each condition. In active TB patients, the levels of IFN-γ that were produced in response to Mtb-specific antigens had high positive correlations with IL-1β, TNF-α, MCP-1, IL-6, IL-12p70, and IL-23, while the proinflammatory cytokines had high positive correlations between themselves and with IL-12p70 and IL-23. These correlations were not observed in QFT-negative or QFT-positive healthy volunteers. Activation with Mtb-soluble extract (a mixture of Mtb antigens and pathogen-associated molecular patterns [PAMPs]) increased the percentage of IFN-γ-/IL-17-producing NK cells and of IL-17-producing innate lymphoid cell 3 (ILC3) in the peripheral blood of active TB patients, but not of QFT-negative or QFT-positive healthy volunteers. Thus, active TB patients have both adaptive and innate lymphocyte subsets that produce characteristic cytokine profiles in response to Mtb-specific antigens or PAMPs. These profiles are not observed in uninfected individuals or in individuals with latent TB, suggesting that they are a response to active TB infection.
Read full abstract