In this paper, we define and find the general solution of the following 3-D cubic functional equation $ \begin{eqnarray*} &&\left(2x_{1}+x_{2}+x_{3}\right) = 3f\left(x_{1}+x_{2}+x_{3}\right)+f\left(-x_{1}+x_{2}+x_{3}\right) +2f\left(x_{1}+x_{2}\right)+2f\left(x_{1}+x_{3}\right) \nonumber \\&& \hspace{3.0cm}-6f\left(x_{1}-x_{2}\right)-6f\left(x_{1}-x_{3}\right)-3f\left(x_{2}+x_{3}\right)+2f\left(2x_{1}-x_{2}\right)\nonumber \\&& \hspace{3.0cm} +2f\left(2x_{1}-x_{3}\right)-18f\left(x_{1}\right)-6f\left(x_{2}\right)-6f\left(x_{3}\right). \end{eqnarray*} $ We also prove the Hyers-Ulam stability of this functional equation in fuzzy normed spaces by using the direct method and the fixed point method.