Antibiotic resistance constitutes a significant public health challenge, with diverse reservoirs of resistant bacteria playing pivotal roles in their dissemination. Among these reservoirs, pets are carrying antibiotic-resistant strains. The objective of this study was to assess the resistance profiles of Escherichia coli, and the prevalence of extended-spectrum β-lactamase (ESBL) producing E. coli strains in dogs and cats from Tamaulipas, Mexico. A total of 300 stool samples (150 dogs and 150 cats) from healthy pets were subjected to analysis. Antibiotic susceptibility testing and the identification of ESBLs were carried out by disc diffusion method. The presence of resistance genes, class 1, 2, and 3 integrons (intI1, intI2, and intI3) and phylogroups was determined by PCR analysis. The findings reveal that 42.6% (128/300) of the strains exhibited resistance to at least one of the eight antibiotics assessed, and 18.6% (56/300) demonstrated multidrug resistance (MDR), that distributed across 69 distinct resistance patterns. Altogether 2.6% of E. coli strains (8/300) were confirmed as TEM and CTX-M type ESBL producers. These outcomes underscore the roles of dogs and cats in Tamaulipas as reservoirs for the dissemination of MDR and/or ESBL strains. The results underscore the necessity for conducting prevalence studies on ESBL-producing E. coli, forming a foundation for comprehending the present scenario and formulating strategies for the control and mitigation of this issue.
Read full abstract