T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) accounts for 10% to 15% of newly diagnosed cases of childhood acute lymphoblastic leukemia (ALL), arising from the malignant transformation of hematopoietic progenitors primed toward T cell development, as result of a multistep oncogenic process. However, since the prognostic significance of these genetic alterations in pediatric T-ALL is not clear, genetic basis which contributes aggressive phenotype or progression of pediatric T-ALL is still to be elucidated. Therefore, to discover driver genetic events, which involved in the aggressive phenotype of pediatric T-ALL and to identify it's novel prognostic markers, we performed integrated genetic analysis in a large cohort of T-ALL case.Our cohorts included samples from Tokyo Children's Cancer Study Group (TCCSG) and Japan Association of Childhood Leukemia Study (JACLS). Whole transcriptome sequencing (WTS) was performed in 123 cases. Representative recurrent fusion genes were as follows, SIL-TAL1 (n=25), MLL-ENL (n=5), PICALM-MLLT10 (n=5), and NUP214-ABL1 (n=2). Intriguingly, novel recurrent in-frame SPI1 fusions (STMN1-SPI1 n=2; TCF7-SPI1 n=5) were detected, and RT-PCR analysis in additional 60 cases revealed other 2 TCF7-SPI1 fusions. Thus, SPI1 fusions accounted for 4% of pediatric T-ALL/LBL. Expression data of WTS revealed cases with SPI1 fusion showed significantly higher expression of SPI1 compared to cases without SPI1 fusion, implicating that aberrant high expression of SPI1 involved in leukemogenesis.To address the functional activities of SPI1 fusions, we performed luciferase assay using the reporter vector contained the CSF1 promoter region with SPI1 binding site. Transient transfection of Hela cells with the SPI1 fusions expression vectors as well as the wild type SPI1 expression vector showed strikingly high levels of transcription of the reporter genes, as compared to transfection with the empty expression vector, indicating that both SPI1 fusions have transcriptional activities.Next, to analyze the leukemogenic potential of SPI1 fusions in vitro, we transduced fusions cDNA into mouse double negative T-cells. Since p16(CDKN2A) is frequently silenced in T-ALL, we also used p16 null double negative T-cells. Both wild-type and p16 null double negative T-cells expressing SPI1 fusions showed increased cell proliferation compared to the MOCK cells.We further evaluated the impact of SPI1 fusions on T cells differentiation. TCF7-SPI1 or MOCK vector was transduced mononuclear cells isolated from mouse bone marrow. These cells were cultured under stimulating factors, such as IL6 and TPO for 3 days, and then transplanted into the irradiated mouse. Subsequently, 6 week after transplantation, FACS analysis was performed. Of interest, significantly high population of cells expressing TCF7-SPI1 was observed in the immature single positive stage, implicating that their differentiation was impaired at the pre-T cell stage. These results indicate that novel SPI1 fusions have a potential leukemogenic effect in pediatric T-ALL. We defined SPI1 overexpression cases as outliers of SPI1 expression, resulting in extremely poor prognosis (log-rank p = 1.9 ×10-6). Of note, significant poor outcome was confirmed by univariate and multivariate analysis in cases with SPI1 overexpression cases (log-rank p = 9.3 ×10-6, and p = 2.0 ×10-6, respectively).In conclusion, SPI1 fusions expressing cells expanded and they remained at an immature stage, implicating a potential leukemogenic activity of these fusions. Not only the cases with SPI1 fusions, but also the cases with high SPI1 expression without fusions showed extremely poor prognosis, suggesting the prognostic value of aberrant SPI1 expression in pediatric T-ALL. Although it remains unclear, why cases with SPI1 fusions/high SPI1 expression have a poor prognosis, our results indicate that these cases are genetically distinct subgroup from other pediatric T-ALL. DisclosuresKataoka:Kyowa Hakko Kirin: Honoraria; Yakult: Honoraria; Boehringer Ingelheim: Honoraria. Ogawa:Kan research institute: Consultancy, Research Funding; Takeda Pharmaceuticals: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding.