ABSTRACTIn this work, poly(ε‐caprolactone) (PCL) and liquid plasticizer were combined used to plasticize poly(vinyl chloride) (PVC), and the possibility of using PVC/PCL/plasticizer blends to fabricate soft PVC with enhanced migration resistance was investigated. Through partial replacement of liquid plasticizers in soft PVC by equal quantity of PCL, flexibility was maintained while extraction loss of plasticizer by organic solvent was reduced significantly. Furthermore, crystallization of PCL in PVC/PCL/plasticizer blends with low PCL content was observed, and crystallization rate of PCL was found to be influenced by plasticizer contents and structures. For instance, crystallization rate of PCL in PVC/PCL/diisononyl phthalate (DINP) (100/40/100) was 3.7 times faster than in PVC/PCL/DINP (100/40/80), while crystallization rate of PCL in PVC/PCL/dioctyl adipate(DOA)(100/40/100) was 8.3 times faster than in PVC/PCL/diisononyl cyclohexane‐1,2‐dicarboxylate (DINCH) (100/40/100). Low‐field 1H NMR test manifested that different crystallization rate of PCL in PVC/PCL/plasticizer blends with different plasticizer structures was triggered by difference in plasticizers' compatibility with PVC, that is, the number of interaction point between PVC and plasticizers. It is concluded that PCL crystallization favored by liquid plasticizers in PVC/PCL/plasticizer blends was induced by interaction competition between PVC/plasticizer and PVC/PCL. As plasticizer content increases or its compatibility with PVC decreases, interaction competition becomes more intense and consequently faster crystallization of PCL occurs. Thus, to obtain soft PVC products with improve migration resistance while avoiding PCL crystallization, the total content of plasticizer (including both liquid plasticizer and PCL) should be lower than 66 phr (40 wt %). © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48803.
Read full abstract