Equilibrium passive sampling techniques based on the low-density polyethylene (LDPE) film are increasingly used for determining the concentration of contaminants in water and air. Reliable models capable of predicting LDPE–water and LDPE–air partition coefficients (KiLDPEw and KiLDPEa) would be very useful. In previous studies, polyparameter linear free energy relationships (PP-LFERs) based on Abraham's solute descriptors were calibrated for LDPE–water and LDPE–air systems. Unfortunately, a portion of unreliable partition coefficients and solute descriptors were included in the calibration sets of these previous studies, leading to unexpected system parameters and predictive performance in the regression results. In this study, more reliable PP-LFERs were recalibrated for LDPE–water and LDPE–air systems (20‒25 °C) using carefully collected reliable partition coefficients and solute descriptors of various polar and nonpolar compounds (over one hundred and with low redundancy) from the literature, as well as the robust regression method. The PP-LFERs performed well with root-mean-square errors of 0.15–0.25 log units and successfully predicted KiLDPEw and KiLDPEa values spanning over 10 orders of magnitude for compounds with reliable descriptors. The partitioning mechanisms of compounds to LDPE were also reanalyzed and compared in detail with n-alkanes (C6–C16). Generally, LDPE is more prone to form dispersion interactions with solutes than n-alkanes, while it is more difficult to form cavities in LDPE. In addition, the crystallinity of LDPE is not the sole reason for the distinct constant terms presenting in PP-LFERs for LDPE–water and n-hexadecane–water systems.
Read full abstract