There has been considerable public interest and a growing number of scientific studies linking certain phenolic compounds in grapes and wines, particularly trans-resveratrol ( trans-3,5,4′-trihydroxystilbene, TRA), to human health benefits. Typical TRA concentrations in wine are very low. It is a polar compound with very low volatility, which makes it difficult to extract and to separate on a gas chromatography (GC) column without derivatization. In this study, a new method for trace analysis of TRA was developed using solid-phase microextraction (SPME) with on-fiber silylation derivatization. Multidimensional GC equipped with a heartcut valve and cryogenic focusing was coupled with a mass-selective detector and used for improved separations and analysis. The effects of SPME fiber selection, extraction time, temperature, and desorption time were investigated. The derivatization conditions, time/temperature and the volume of derivatization reagent were also optimized. The calibration curve was linear over the concentration range from 10 ng L −1 to 5 mg L −1, with a correlation coefficient of 0.9996. The average recovery of TRA in red wine was 83.6 ± 5.6%. The method detection limit (MDL) for TRA in ethanol:water (12.5:87.5, v/v) solution in this study was 7.08 ng L −1 whereas the MDL for TRA in pure water was 2.85 ng L −1. The new method was used to test the TRA content in six selected Iowa red wine samples. Measured concentrations varied from 12.72 to 851.9 μg L −1.
Read full abstract