The role that the genetic diversity of natural Trypanosoma cruzi populations plays in response to trypanocidal treatment of chronic Chagas disease (CD) patients remains to be understood. We analysed the genetic polymorphisms of parasite bloodstream populations infecting chronic CD patients enrolled in the E1224 clinical trial. A total of 506 baseline and post-treatment follow-up samples from 188 patients were analysed. T. cruzi satellite DNA (satDNA) was amplified and sequenced using cruzi1/cruzi2 primers, and samples with TcI/III, TcII, TcIV or hybrid satDNA sequences were identified. Minicircle signatures were obtained after kinetoplast DNA amplification using 121/122 primers and restriction enzyme digestion. Genetic distances between baseline and post-treatment minicircle signatures were estimated using the Jaccard coefficient. At baseline, 74.3% TcII, 17.9% hybrid and 7.8% TcI/III satDNA sequences were found, whereas at the end of follow-up the distribution was 55.2% TcII, 35.2% hybrid and 9.5% TcI/III. The placebo arm was the treatment group with the highest variation of satDNA sequences between baseline and post-treatment follow-up. Genetic distances between baseline and post-treatment minicircle signatures were similar among all treatment arms. No association between minicircle signature variability and satDNA type distribution was found. Genetic variability of T. cruzi bloodstream populations during post-treatment follow-up did not differ from that observed during chronic infection in the absence of treatment, suggesting that there were no selection events of E1224-resistant parasite populations. This is the first report documenting the genetic polymorphism of natural T. cruzi populations in chronic patients in the context of clinical trials with trypanocidal drugs.