Carbon molecular sieve (CMS) membranes with precise molecular discrimination ability and facile scalability are attractive next-generation membranes for large-scale, energy-efficient gas separations. Here, structurally engineered CMS membranes derived from a tailor-made cross-linkable copolyimide with kinked structure are reported. We demonstrate that combining two features, kinked backbones and cross-linkable backbones, to engineer polyimide precursors while controlling pyrolysis conditions allows the creation of CMS membranes with improved gas separation performance. Our results indicate that the CMS membranes provide a versatile platform for a broad spectrum of challenging gas separations. The gas transport properties of the resulting CMS membranes are interpreted in terms of a model reflecting both molecular sieving Langmuir domains and a disordered continuous phase, thereby providing insight into structure evolution from the cross-linkable polyimide precursor to a final CMS membrane. With this understanding of CMS membrane structure and separation performance, these systems are promising for environmentally friendly gas separations.