The interseismic behavior of faults (whether they are locked or creeping) and their quantitative kinematic constraints are critical for assessing the seismic hazards of faults and their surrounding areas. Currently, the creep of the eastern segment of the Laohushan Fault in the Haiyuan Fault Zone at the northeastern margin of the Tibetan Plateau, as revealed by InSAR observations, lacks confirmation from other observational methods, particularly high-precision GNSS studies. In this study, we utilized nearly seven years of observation data from a dense GNSS continuous monitoring profile (with a minimum station spacing of 2 km) that crosses the eastern segment of the Laohushan Fault. This dataset was integrated with GNSS data from regional continuous stations, such as those from the Crustal Movement Observation Network of China, and multiple campaign measurements to calculate GNSS baseline change time series across the Laohushan Fault and to obtain a high spatial resolution horizontal crustal velocity field for the region. A comprehensive analysis of this primary dataset indicates that the Laohushan Fault is currently experiencing left-lateral creep, characterized by a partially locked shallow segment and a deeper locked segment. The fault creep is predominantly concentrated in the shallow crustal region, within a depth range of 0–5.7 ± 3.4 km, exhibiting a creep rate of 1.5 ± 0.7 mm/yr. Conversely, at depths of 5.7 ± 3.4 km to 16.8 ± 4.2 km, the fault remains locked, with a loading rate of 3.9 ± 1.1 mm/yr. The shallow creep is primarily confined within 3 km on either side of the fault. Over the nearly seven-year observation period, the creep movement within approximately 5 km of the fault’s near field has shown no significant time-dependent variation, instead demonstrating a steady-state behavior. This steady-state creep appears unaffected by postseismic effects from historical large earthquakes in the adjacent region, although the deeper (far-field) tectonic deformation of the Laohushan Fault may have been influenced by the postseismic effects of the 1920 Haiyuan M8.5 earthquake.
Read full abstract