This study examines the variability in the impacts of factors influencing injury severity outcomes of elderly pedestrians (age >64) involved in vehicular crashes at intersections and non-intersections before, during, and after the COVID-19 pandemic. To account for unobserved heterogeneity in the crash data, a random parameters logit model with heterogeneity in the means approach is utilized to analyze vehicle-elderly pedestrian crash data from Seoul, South Korea, occurring between 2018 and 2022. Preliminary transferability tests revealed instability in factor impacts on injury severity outcomes, highlighting the need to estimate individual models across various road segments and time periods. Thus, the dataset was segregated by crash location (intersection/non-intersection) and period (before, during, and after COVID-19), with individual models estimated for each group. Results obtained from the analyses revealed that back injuries positively influenced fatalities at non-intersections after the pandemic and was negatively associated with fatalities at intersections before the pandemic. Additionally, several indicators demonstrated significant instability in their impact magnitudes across different road segments and crash years. During the pandemic, head injuries increased the probability of fatalities higher at non-intersections. After the pandemic, crosswalk locations decreased the possibility of fatalities more at intersections. Compared to intersection segments, the female indicator reduced the likelihood of fatal injuries at non-intersections more before, during, and after the pandemic. Before the pandemic, much older pedestrians experienced a greater decline in fatalities at intersections than non-intersections. This instability could be attributed to altered mobility patterns stemming from the COVID-19 pandemic. Overall, the study findings highlight the variability of determinants of fatal/severe injury outcomes among elderly pedestrians across various road segments and years, with the underlying cause of this fluctuation remaining unclear. Furthermore, the findings revealed that accounting for heterogeneity in the means of random parameters enhances model fit and provides valuable insights for safety professionals. The factor impact variability in the estimated models carries significant implications for elderly pedestrian safety, especially in scenarios where precise projections of the effects of alternative safety measures are essential. Road safety experts can leverage these findings to refine or update current policies to enhance elderly pedestrian safety at intersections and non-intersections.