Reinforced concrete (RC) structures are vulnerable to damage under dynamic loads such as earthquakes, necessitating innovative solutions that enhance both performance and sustainability. This study investigates the integration of Engineered Cementitious Composites (ECC) in RC frames to improve ductility, durability, and energy dissipation while considering cost-effectiveness. To achieve this, the partial replacement of concrete with ECC at key structural locations, such as beam–column joints, was explored through experimental testing and numerical simulations. Small-scale beams with varying ECC replacements were tested for failure modes, load–deflection responses, and crack propagation patterns. Additionally, nonlinear quasi-static cyclic and modal analyses were performed on full RC frames, ECC-reinforced frames, and hybrid frames with ECC at the joints. The results demonstrate that ECC reduces the need for shear reinforcement due to its crack-bridging ability, enhances ductility by up to 25% in cyclic loading scenarios, and lowers the formation of plastic hinges, thereby contributing to improved structural resilience. These findings suggest that ECC is a viable, sustainable solution for achieving resilient infrastructure in seismic regions, with an optimal balance between performance and cost.
Read full abstract