This work presents an adaptive phase-field cohesive zone model (PF-CZM) for simulating mixed-mode crack nucleation and growth in isotropic rock-like materials subjected to thermo-mechanical interactions. The proposed approach combines an adaptive multi-patch isogeometric analysis (MP-IGA) and length-scale insensitive PF-CZM. The formulation captures the distinct critical energy release rates for Mode-I and Mode-II fractures, which is crucial for predicting mixed-mode thermo-mechanical fracture behavior in isotropic rock-like materials. The PF-CZM governing equations are solved with isogeometric analysis based on locally refined non-uniform rational B-splines (LR NURBS), and the complex structural geometry is exactly described with multiple LR NURBS patches. The field variables, such as displacement, phase-field, and temperature at the interface of adjacent patches, are coupled using Nitsche’s method. To enhance the computational efficiency while maintaining accuracy, a refinement-correction adaptive scheme combined with the structured mesh refinement strategy is developed. The proposed framework is validated against recent numerical and experimental results in the literature, particularly in the context of capturing complex behavior of mixed-mode crack propagation in isotropic rock-like materials subjected to thermo-mechanical loading.
Read full abstract