The corrosion-fatigue test is widely used to assess marine equipment. However, due to the low-frequency and high-cycle loading of marine equipment in service, conventional test methods require long cycle times and high costs. This makes it challenging to meet the rapid evaluation demands associated with equipment development effectively. In this study, an accelerated corrosion test method was proposed for steel by adjusting the composition, temperature, pH and H2O2 concentration of environment. Fatigue crack growth tests were conducted under various corrosion environments and load frequencies. The matching relationships between corrosion fatigue acceleration multiplier, corrosion environment parameters and load parameters were established. Additionally, a corrosion fatigue acceleration test method was proposed based on the equivalent principle of fatigue crack growth. The results show that effective coupling between corrosion and fatigue can be achieved by gradually reducing the load frequency as the stress intensity factor amplitude increases throughout the crack growth process. It is consistent with the trend of fatigue crack growth rate in the seawater environment. The 4.85% fatigue life deviation and the 15.68 times corrosion fatigue acceleration can be achieved by our method. This work improves the accuracy and reliability of fatigue performance evaluation for offshore equipment.
Read full abstract