This paper presents the bending tests of four ultra-high performance concrete (UHPC) frame beams and one normal strength concrete (NSC) frame beam, all reinforced with steel-FRP composite bars (SFCBs). A comprehensive analysis was carried out, encompassing evaluation of the failure mode, crack propagation, bearing capacity, deformation, strain response, and plastic rotational capacity of the frame beams. Investigating the effects of concrete type, reinforcement type, and beam-end reinforcement ratio on the flexural performance of the frame beams was a key aspect of this study. A three-dimensional finite element (FE) model of the frame beam was established and rigorously verified. The developed model enabled a detailed parametric analysis involving the steel ratio, the yield strength of the inner core steel bar, the elastic modulus of the FRP, and the ultimate tensile strength of the SFCB. The results indicated a consistent failure mode of all frame beams: crushing of concrete at the beam-end, initiating a sequence of plastic hinge occurrence starting at the beam-end and then progressing to mid-span. The substitution of normal strength concrete with UHPC significantly enhanced various aspects of the frame beams, including the flexural capacity, deformation, ductility, ultimate energy dissipation, and plastic rotational capacity, while inhibiting the generation and expansion of cracks. Notably, the plastic rotation angle of SFCB-UHPC frame beams was 4.9 times greater than those of steel-UHPC frame beams, emphasizing the effectiveness of SFCB in enhancing the beam-end plastic rotational capacity. A decrease in the beam-end reinforcement ratio significantly reduced the flexural capacity, ultimate energy dissipation, and beam-end plastic rotational capacity, while improving ductility. Additionally, the study established a formula for calculating the equivalent plastic hinge length, utilizing the relative compressive zone height and effective section height of the beam-end controlling section as variables, which demonstrated good alignment between predicted and experimental results.
Read full abstract