As hydrogen reduces the fatigue life of 100Cr6 bearing steel significantly, extensive research on the interaction of hydrogen with 100Cr6 is necessary. This study investigated the influence of rolling/sliding tribotesting performed on a micro-pitting-rig on the hydrogen absorption and trapping behaviour of 100Cr6 bearing steel. Thermal desorption mass spectrometry was used to compare the hydrogen desorption spectra of 100Cr6 samples after tribological tests and static heated oil-immersion tests to untested reference samples. The approach was chosen to further understand the influence of both microstructural deformation as well as steel-oil contact on the hydrogen absorption and trapping behaviour of 100Cr6. The tribological test showed a stable friction behaviour and mild wear which was dominated by local plastic deformation of surface asperities. Despite the mild wear, a change in de-trapping temperatures was found for tribotested samples compared to oil-immersed and untested reference samples. This finding indicates that even mild tribotesting conditions alter the hydrogen trapping behaviour of 100Cr6 bearing steel.
Read full abstract