Metabolic, circadian, sleep, and reproductive systems are integrated and reciprocally regulated, but the understanding of the mechanism is limited. To study this integrated regulation, the circadian timing system was disrupted by exposing late pregnant nonlactating (dry) cows to chronic shifts in the light-dark phase, and rhythms of body temperature and circulating cortisol (CORT), progesterone (P4), serotonin (5HT), melatonin (MEL), and growth hormone (GH) concentrations were measured. Specifically, across 2 identical studies (1 and 2), at 35 d before expected calving (BEC) multiparous cows were assigned to control (CON; n = 24) and exposed to 16 h light and 8 h dark or phase shift (PS; n = 24) treatments and exposed to 6-h light-dark phase shifts every 3 d until parturition. All cows were exposed to control lighting after calving. Blood samples were collected in the first study at 0600 h on d 35 BEC, d 21 BEC, and 2 d before calving, and d 0, 2, 9, 15, and 22 postpartum (PP). A subset of cows (n = 6/group) in study 1 was blood sampled every 4 h over 48 h beginning on d 23 BEC, 9 BEC, and 5 PP. Body temperature was measured every 30 min (n = 8-16/treatment) for 48 h at 23 BEC and 9 BEC in both studies; and at 14 PP and 60 PP only in study 2. Treatment did not affect levels of CORT, GH, or P4 at 0600 h, but overall level of 5HT was lower and MEL higher in PS cows across days sampled. A 2-component versus single-component cosinor model better described [>coefficient of determination (R2); <Akaike information criterion and <Bayesian information criterion] daily oscillations of all hormones and temperature for both treatments. Circadian rhythm fit (R2) of body temperature and MEL increased from 23 BEC to 9 BEC in CON and was marked by loss of feeding time influence on oscillations in both treatments. Both treatments exhibited circadian rhythms of CORT at 9 BEC, CON cows also exhibited circadian rhythms in P4 at 23 BEC, and 5HT at 9 BEC. Daily oscillations in temperature and hormones, except CORT, were affected by PS treatment in the prepartum and were associated with longer gestation. In the PP, circadian rhythmicity was lost or diminished for all hormones and body temperature in both treatments. Stronger rhythms of body temperature and multiple hormones at 1 wk prepartum may indicate a synchronizing cue to time parturition. Therefore, dairy systems may need to consider management factors that affect circadian clocks in late-gestation cows.