Over the past decade, automation of digital image analysis has become commonplace in both research and clinical settings. Spurred by recent advances in artificial intelligence and machine learning (AI/ML), tissue sub-compartments and cellular phenotypes within those compartments can be identified with higher throughput and accuracy than ever before. Recently, immune checkpoints have emerged as potential targets for auto-immune diseases. As such, spatial identification of these proteins along with immune cell markers (e.g., CD3+/LAG3+ T-cells) is a crucial step in understanding the potential and/or efficacy of such treatments. Here, we describe a semi-automated imaging and analysis pipeline that identifies CD3+/LAG3+ cells in colorectal tissue sub-compartments. While chromogenic staining has been a clinical mainstay and the resulting brightfield images have been utilized in AI/ML approaches in the past, there are associated drawbacks in phenotyping algorithms that can be overcome by fluorescence imaging. To address these tradeoffs, we developed an analysis pipeline combining the strengths of brightfield and fluorescence images. In this assay, immunofluorescence imaging was conducted to identify phenotypes followed by coverslip removal and hematoxylin and eosin staining of the same section to inform an AI/ML tissue segmentation algorithm. This assay proved to be robust in both tissue segmentation and phenotyping, was compatible with automated workflows, and revealed presence of LAG3+ T-cells in ulcerative colitis biopsies with spatial context preserved.