Open-set recognition (OSR) toward a practical open-world setting has attracted increasing research attention in recent years. However, existing OSR settings are either too idealized or focus on specific scenes such as long-tailed distribution and few-shot samples, which fail to capture the complexity of real-world scenarios. In this article, we propose a realistic OSR (ROSR) setting that covers a diverse range of challenging and real-world scenarios, including fine-grained cases with strong semantic correlation and a large number of species, few-shot samples, long-tailed sample distribution, dynamic inputs (e.g., images, spatio-temporal, and multimodal signals) and cross-domain adaptation. In particular, we rethink the simple and basic OpenMax for the ROSR setting and introduce a novel method, regularized discriminative OpenMax (RD-OpenMax), to handle the challenges in the ROSR setting. RD-OpenMax improves upon the basic OpenMax approach by introducing a covariance attention-based covariance pooling (CACP) module as a global aggregation step before the deep architecture's classifier. This module explores rich statistical information on features and provides discriminative distance scores for OpenMax. To address the instability of extreme value theory (EVT) estimation due to insufficient training samples under few-shot and long-tailed scenarios, we propose a regularized EVT (REVT) method based on Monte Carlo sampling to recalibrate the distribution of distance scores. As such, our RD-OpenMax performs a REVT model of distance scores generated by discriminative CACP representations to distinguish known classes and recognize unknown ones effectively and robustly. Extensive experiments are conducted on more than ten visual benchmarks across several scenarios, and the empirical comparisons show that the ROSR setting challenges existing state-of-the-art OSR approaches. Moreover, our RD-OpenMax clearly outperforms its counterparts under the ROSR setting while performing favorably against state-of-the-arts under the traditional OSR setting.
Read full abstract