Vision-inertial navigation offers a promising solution for aircraft to estimate ego-motion accurately in environments devoid of Global Navigation Satellite System (GNSS). However, existing approaches have limited adaptability for fixed-wing aircraft with high maneuverability and insufficient visual features, problems of low accuracy and subpar real-time arise. This paper introduces a novel vision-inertial heterogeneous data fusion methodology, aiming to enhance the navigation accuracy and computational efficiency of fixed-wing aircraft landing navigation. The visual front-end of the system extracts multi-scale infrared runway features and computes geo-reference runway image as observation. The infrared runway features are recognized efficiently and robustly by a lightweight end-to-end neural network from blurry infrared images, and the geo-reference runway is generated through projection of the runway’s prior geographical information and prior pose. The fusion back-end of the navigation system is the Covariance Feedback Control based Cubature Kalman Filter (CFC-CKF) framework, which tightly integrates visual observations and inertial measurements for zero-drift pose estimation and curbs the effect of inaccurate kinematic noise statistics. Finally, real flight experiments demonstrate that the algorithm can estimate the pose at a frequency of 100 Hz and fulfill the navigation accuracy requirements for high-speed landing of fixed-wing aircraft.
Read full abstract