The possibility of tight coupling of phospholipase C with the signal pathway PI3K/ PTEN, a ubiquitous mechanism for the control of chemotaxis and cell shape in free-living amoebae and mammalian tissue cells, has been investigated in Physarum polycephalum plasmodium, a multinuclear amoeboid cell with the autooscillatory mode of motility. It was found that on the maintenance of contractile autooscillations and protoplasmic shuttle streaming, U73122, an inhibitor of the signal transduction to phospholipase C, induces degradation of the plasmodium frontal zone, decreases efficiency of locomotion and suppresses the chemotaxis toward glucose as well as the response of oscillator to this attractant. The identity of the effects of U73122 with those shown for wortmannin and LY294002, widely used PI3K inhibitors (Matveeva et al. 2008. Biophysics. 53, 533–538), suggests a tight coupling of the signal pathways of phospholipase C and PI3K/PTEN. U73122 increases the period of contractile oscillations and abolishes its cyclic changes attributed for the plasmodium migration. The results indicate that motile behavior of the plasmodium is under the receptor-mediated control.
Read full abstract