The problem of constructing eigenfunctions of a one-dimensional thermoelastic operator in Cartesian, cylindrical, and spherical coordinate systems is considered. The corresponding Sturm–Liouville problem is formulated using Fourier’s separation of variables applied to a coupled system of thermoelasticity equations, assuming that the heat transfer rate is finite. It is shown that the eigenfunctions of the one-dimensional thermoelastic operator are expressed in terms of well-known trigonometric, cylinder, and spherical functions. However, coupled thermoelasticity problems are solved analytically only under certain boundary conditions, whose form is determined by the properties of the eigenfunctions.
Read full abstract