Superplastic deformation in metals and alloys, characterized by ultrahigh ductility (exceeding 300%) without cracking at elevated temperatures, is a critical process for manufacturing complex-shaped components. While a few grain-boundary (GB)-mediated deformation mechanisms have been identified as essential contributors to superplasticity in fine-grained polycrystals (grain size is typically less than 10 μm), it is still a challenge to maintain a steady fine-grained microstructure and sustainable plastic flow at high temperatures. Partially due to the lack of a quantitative description of dislocation-GB reactions, it has not been well recognized how grain coarsening can be suppressed by the external loading during superplastic deformation. In this work, we address this challenge by formulating a disclination-dislocation coupling equation within the Lie-algebra framework, providing a quantitative understanding of the interactions between disclinations, dislocations, and GBs. Using quasi-in-situ electron backscattered diffraction (EBSD) analysis in Mg alloys, we systematically investigate the multiscale interactions of the defects and their impact on grain structure evolution. Three key mechanisms that suppress conventional grain coarsening have been identified, i.e., disclination-assisted GB accommodation, disclination-GB pinning, and disclination-induced sub-GB crossing, all of which are captured by the proposed equation. This study contributes to the broader field of plasticity by linking macroscopic deformation behavior with microscopic mechanisms, offering new insights into the theory of superplastic deformation in metals and alloys.
Read full abstract