The high water consumption in agriculture has led to an obvious water crisis in this sector, and the use of unconventional water sources, especially agricultural drains, is considered necessary. For this purpose, the present study was carried out to evaluate the efficiency of biological filters with different types of substrates for treating agricultural wastewater in Khuzestan province, located in the south of Iran, to use receptive resources and reuse them in agriculture. Next, the efficiency of four types of biological filters for treating agricultural drainage water with different retention times was evaluated. Sawdust, cotton stalks, wheat straw, stubble, and rice husk were used as filters. Qualitative factors included agricultural pesticides (Atrazine, Randup, Paraquat, and 2, 4-D) and nutrients (nitrate, nitrogen, phosphate, and phosphorus). By examining the trend of increasing the retention time and the corresponding removal percentage, it was observed that the retention time has a direct relationship with the amount of removal efficiency of nutrients and agricultural toxins. As the residence time increases, the average amount of nutrient compounds in different filters decreases, and their removal percentage increases. The highest removal percentage of nitrate, total nitrogen, phosphate, and total phosphorus was 74.03, 71.66, 57.97, and 61.85% in the sawdust filter and was assigned to 10 days. The highest percentage of removal of Atrazine, Tofudi, Paraquat, and Roundup toxins with a removal efficiency of 91.73, 84.27, 89.81, and 88.46% was also observed in the treatment of sawdust for 10 days. The sawdust filter showed a good performance in removing the parameters of agricultural toxins and nutrient compounds in a retention time of 10 days compared to other filters and retention times. As a general result, the sawdust filter can be cited as a reliable substrate with acceptable efficiency compared to other filters.
Read full abstract