A large number of herbivorous mammals and reptiles in many terrestrial ecosystems across the globe are presently in the receiving end of extinction. Over-exploitation by its immediate predator and anthropogenic actions is one of the main reasons. Reintroduction of apex predator or top predator at some instances has proven to be a successful strategy in restoring ecological balance. In this paper, we conceptualize the role of top predator in enriching the density of vulnerable species of lower trophic level, with the help of mathematical modeling. First, the dynamical behavior of two species system (prey and mesopredator) is studied, where growth of prey is subject to strong Allee effect. Also, the cost of predation induced fear is incorporated in the growth term. Parametric regions, for which the species perceive extinction risk are analyzed and depicted numerically. We consider that whenever density of the vulnerable species reach a certain threshold, minimum viable population, top predator is introduced in the habitat. Our obtained results show that a species population can be restored from the verge of extinction to a stable state with much higher population density with the introduction of top predator and even it stabilizes an oscillatory system.
Read full abstract