In this paper, we study the total displacement statistic of parking functions from the perspective of cooperative game theory. We introduce parking games, which are coalitional cost-sharing games in characteristic function form derived from the total displacement statistic. We show that parking games are supermodular cost-sharing games, indicating that cooperation is difficult (i.e., their core is empty). Next, we study their Shapley value, which formalizes a notion of "fair" cost-sharing and amounts to charging each car for its expected marginal displacement under a random arrival order. Our main contribution is a polynomial-time algorithm to compute the Shapley value of parking games, in contrast with known hardness results on computing the Shapley value of arbitrary games. The algorithm leverages the permutation-invariance of total displacement, combinatorial enumeration, and dynamic programming. We conclude with open questions around an alternative solution concept for supermodular cost-sharing games and connections to other areas in combinatorics.
Read full abstract