PurposeUsing Nigeria, as a point of reference, this study aims to explore the applicability of climatic variables as analytically valid factors for conceptual cost estimation. This is in view of the vastness and topographical alignment of Nigeria's landmass, which makes it a country of extreme climatic variability from north to south. As construction costs in Nigeria, similarly, tend to show a north-south alignment, the study's objective is to establish cost-estimating relationships (CERs) between the variability of climatic elements and the variance in construction cost, to arouse interest in the concept.Design/methodology/approachDeploying correlation analysis and multiple regression analysis, significant associations/relationships between meteorological variables and building cost for selected locations, following a North-South transect of the major climatic zones, are sought, to explain climate-induced construction cost variance. Validation of the regression model was carried out using variance analysis and the Mean Absolute Percentage Error of a different dataset.FindingsClimatic indices of atmospheric moisture exhibited strong direct and partial correlations with construction costs, while sunshine hours and temperature were inversely correlated. The study further establishes statistically significant CERs between climatic variables and building cost in Nigeria, which accounted for 47.9% of the variance in construction cost across the climatic zones.Practical implicationsThe study outcome provides a statistically valid platform for the development of more elaborate analytical costing models, for prototype buildings to be cited in disparate climatic settings.Originality/valueThis study establishes the statistical validity of climatic variables in constituting CERs for predicting construction costs in disparate climatic settings.
Read full abstract