AimsStreptozotocin (STZ)-induced diabetic animal models have been widely used to study diabetic myopathy; however, non-specific cytotoxic effects of high-dose STZ have been discussed. The purpose of this study was to compare diabetic myopathy in a high-STZ model with another well-established STZ model with reduced cytotoxicity (high-fat diet (HFD) and low-dose STZ) and to identify mechanistic insights underlying diabetic myopathy in STZ models that can mimic perturbations observed in human patients with diabetic myopathy. Main methodsMale C57BL6 mice were injected with a single high dose of STZ (180 mg/kg, High-STZ) or were given HFD plus low-dose STZ injection (STZ, 55 mg/kg/day, five consecutive days, HFD/STZ). We characterized diabetic myopathy by histological and immunochemical analyses and conducted gene expression analysis. Key findingsThe high-STZ model showed a significant reduction in tibialis anterior myofiber size along with decreased satellite cell content and downregulation of inflammation response and collagen gene expression. Interestingly, blood corticosteroid levels were significantly increased in the high-STZ model, which was possibly related to lowered inflammation response-related gene expression. Further analyses using the HFD/STZ model showed downregulation of gene expression related to mitochondrial functions accompanied by a significant decrease in ATP levels in the muscles. SignificanceThe high-STZ model is suitable for studies regarding not only severe diabetic myopathy with excessive blood glucose but also negative impact of glucocorticoids on skeletal muscles. In contrast, the HFD/STZ model is characterized by higher immune responses and lower ATP production, which also reflects the pathologies observed in human diabetic patients.