The 4-vessel occlusion rat model of cerebral ischemia was modified to permit the simultaneous measurement of cerebral blood flow (hydrogen clearance), brain edema (specific gravity), cerebrovascular permeability (14C-AIB) and electrocardiogram. Surgery was performed in one stage in the anesthetised, paralysed and ventilated rat and severe hemispheric ischemia was produced in all animals. Electrode implantation did not alter cortical specific gravity or Ki for 14C-AIB. During 4-vessel occlusion mean cortical CBF was 5.8 +/- 1.4 ml-1 100 g-1 min. and this was associated with an isoelectric ECoG; 15 min of ischemia produced a significant reduction in mean cortical specific gravity (increase in brain edema). Following 15 min ischemia, 180 min of recirculation were permitted. Post-ischemic blood flow showed an immediate hyperemia (CBF = 202 +/- 12 ml-1 100 g-1 min.) followed by hypoperfusion (CBF = 58 +/- 8 ml-1 100 g-1 min). There was an early further decrease in cortical specific gravity. Further recirculation led to a significant increase in cortical specific gravity (resolution of brain edema). The transfer constant (Ki) for 14C-AIB was not altered at any stage in recirculation. This appears to be a model of pure cytotoxic edema until 180 min recirculation after 15 min cerebral ischemia. Recirculation permitted return of cortical electrical activity.