Zinc is one of the essential divalent cations in the human body and a fundamental microelement involved in the regulation of many cellular and subcellular functions. Experimental studies reported that zinc deficiency is associated with renal damage and could increase blood pressure. It was proposed that zinc dietary supplementation plays a renoprotective role. Our study aimed to investigate the effects of zinc on intracellular signaling in renal cells and explore the correlation between dietary zinc and the progression of salt-induced hypertension. The impact of extracellular zinc concentrations on two different kidney epithelial cell types - podocytes and principal cells of the cortical collecting duct (CCD), was tested. In podocytes, a rise in extracellular zinc promotes TRPC6 channel-mediated calcium entry but not altered intracellular zinc levels. However, we observe the opposite effect in CCD cells with no alteration in calcium levels and steady-state elevation in intracellular zinc. Moreover, prolonged extracellular zinc exposure leads to cytotoxic insults in CCD cells but not in podocytes, characterized by increased cell death and disrupted cytoskeletal organization. Next, we tested if dietary zinc plays a role in the development of hypertension in Dahl salt-sensitive rats. Neither zinc-rich nor deficient diets impact the regular development of salt-sensitive hypertension. These results suggest specialized roles for zinc in renal function, implicating its involvement in proliferation and apoptosis in CCD cells and calcium signaling and cytoskeletal dynamics modulation in podocytes. Further research is required to elucidate the detailed mechanisms of zinc action and its implications in renal health and disease.
Read full abstract