Clostridium difficile, also known as Clostridioides difficile, is a Gram-positive, spore-forming bacterium that is a leading cause of antibiotic-associated diarrhea. C.difficile infections begin when its metabolically dormant spores germinate to form toxin-producing vegetative cells. Successful spore germination depends on the degradation of the cortex, a thick layer of modified peptidoglycan that maintains dormancy. Cortex degradation is mediated by the SleC cortex lytic enzyme, which is thought to recognize the cortex-specific modification muramic-δ-lactam. C.difficile cortex degradation also depends on the Peptostreptococcaceae-specific lipoprotein GerS for unknown reasons. In this study, we tested whether GerS regulates production of muramic-δ-lactam and thus controls the ability of SleC to recognize its cortex substrate. By comparing the muropeptide profiles of ΔgerS spores to those of spores lacking either CwlD or PdaA, both of which mediate cortex modification in Bacillus subtilis, we determined that C.difficile GerS, CwlD, and PdaA are all required to generate muramic-δ-lactam. Both GerS and CwlD were needed to cleave the peptide side chains from N-acetylmuramic acid, suggesting that these two factors act in concert. Consistent with this hypothesis, biochemical analyses revealed that GerS and CwlD directly interact and that CwlD modulates GerS incorporation into mature spores. Since ΔgerS, ΔcwlD, and ΔpdaA spores exhibited equivalent germination defects, our results indicate that C.difficile spore germination depends on cortex-specific modifications, reveal GerS as a novel regulator of these processes, and highlight additional differences in the regulation of spore germination in C.difficile relative to B.subtilis and other spore-forming organisms.IMPORTANCE The Gram-positive, spore-forming bacterium Clostridium difficile is a leading cause of antibiotic-associated diarrhea. Because C.difficile is an obligate anaerobe, its aerotolerant spores are essential for transmitting disease, and their germination into toxin-producing cells is necessary for causing disease. Spore germination requires the removal of the cortex, a thick layer of modified peptidoglycan that maintains spore dormancy. Cortex degradation is mediated by the SleC hydrolase, which is thought to recognize cortex-specific modifications. Cortex degradation also requires the GerS lipoprotein for unknown reasons. In our study, we tested whether GerS is required to generate cortex-specific modifications by comparing the cortex composition of ΔgerS spores to the cortex composition of spores lacking two putative cortex-modifying enzymes, CwlD and PdaA. These analyses revealed that GerS, CwlD, and PdaA are all required to generate cortex-specific modifications. Since loss of these modifications in ΔgerS, ΔcwlD, and ΔpdaA mutants resulted in spore germination and heat resistance defects, the SleC cortex lytic enzyme depends on cortex-specific modifications to efficiently degrade this protective layer. Our results further indicate that GerS and CwlD are mutually required for removing peptide chains from spore peptidoglycan and revealed a novel interaction between these proteins. Thus, our findings provide new mechanistic insight into C.difficile spore germination.